SCR Catalyst Performance on U.S. Coal Fired Boilers

2002 Conference on Selective Catalytic Reduction and Non-Catalytic Reduction for NOx Control

Pittsburgh, Pennsylvania, USA

May 16, 2002

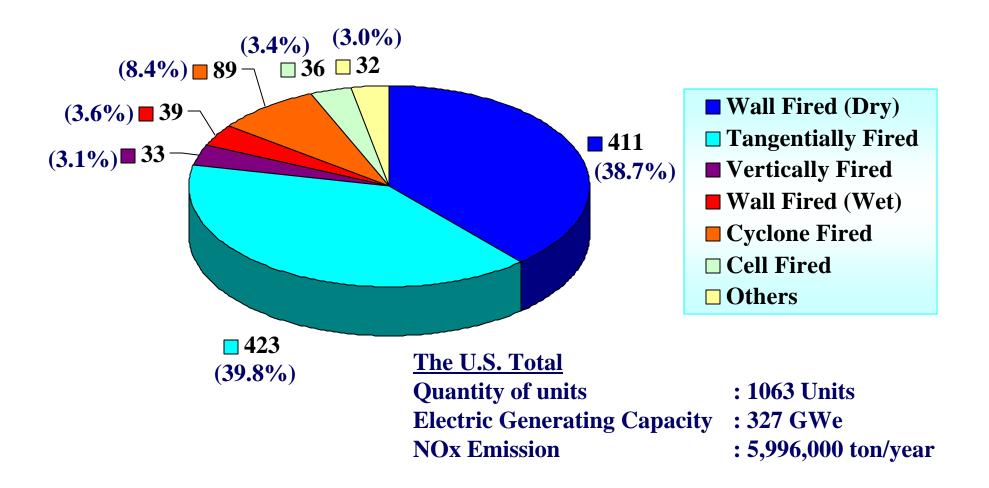
Presented By HITACHI ZOSEN ENGINEERING U.S.A. LTD.

Over View

SCR Catalyst Testing on USHS and PRB Coals

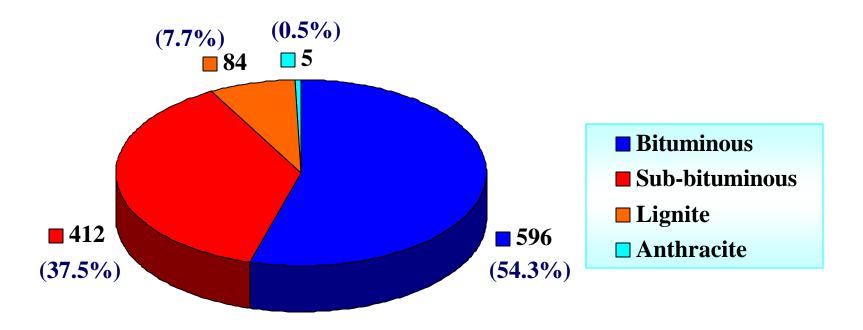
- **The U.S. Coal-fired Boilers (Boiler Types, Kind of Coal)**
- **Analysis of the Fly Ash Properties**
- **↓** Influence on the SCR Catalyst for the U.S. Coal-fired Boiler application
- Testing
 - Catalyst Poisoning (Fly Ash, As₂O₃, Acid Gases)
 - Plugging

- Erosion
- Operational Experiences
 - Catalyst Activity


SO₂ Oxidation

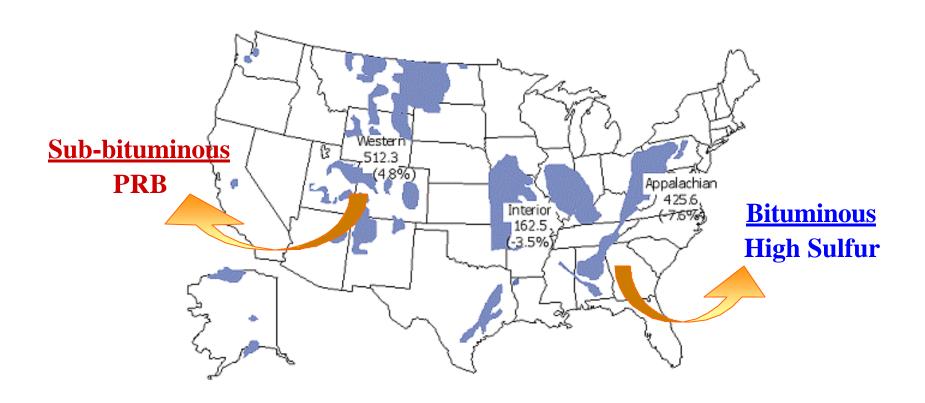
Plugging

Erosion


Conclusion

Summary of the U.S. Coal Fired Boilers

Source: DOE Fossil Energy – Low NOx Clean Technology Burners (1990)


Summary of the U.S. Coal Production

U.S. Total: 1,100 million short ton / year

Source: Coal Industry Annual 1999, DOE/EIA

The U.S. Coal Production

Source: Energy Information Administration

Coal Properties Analysis

	Bituminous (Japan)	USHS	PRB				
As Received [v	As Received [wt%]						
Moisture	12.0	11.2	27.0				
Ash	13.7	10.9	5.0				
Moisture and a	Moisture and ash-free [wt%]						
Carbon	80.5	80.8	76.2				
Hydrogen	5.1	4.9	5.4				
Nitrogen	1.6	1.6	1.1				
Sulfur	0.9	2.6	0.4				
Oxygen	11.9	10.1	16.9				
HHV [Btu/lb]	11,640	11,260	8,760				

USHS: the U.S. High Sulfur Bituminous Coal

Fly Ash Properties Analysis (1)

Boiler Type		Dry-bottom	Wet-bottom		
Fly Ash Re-Circulation		No	No	Yes	
Coal		USHS	USLS	USHS	
Na ₂ O	[wt%]	2.1	0.9	1.6	
K ₂ O	[wt%]	2.5	3.0	2.8	
MgO	[wt%]	1.9	2.5	,	
CaO	[wt%]	3.8	6.6	4.1	
Fe ₂ O ₃	[wt%]	16.9	15.4	23.9	
Al_2O_3	[wt%]	22.8	24.3	20.1	
SiO ₂	[wt%]	47.3	43.5	38.8	
TiO ₂	[wt%]	1.4	1.5	1.5	
As	[ppm]	70	75	320	
Fouling Index	[,]	0.38	0.41	0.54	

Fly Ash Properties Analysis (2)

Boiler Type		Dry-bottom				
Fly Ash Re-Circulation		No	No	No		
Coal		Bituminous (Japan)	USHS	PRB		
Na ₂ O	[wt%]	0.3	2.1	3.8		
K_2O	[wt%]	0.5	2.5	1.4		
MgO	[wt%]	1.8	1.9	2.5		
CaO	[wt%]	8.2	3.8	28.3		
Fe ₂ O ₃	[wt%]	6.1	16.9	7.0		
Al ₂ O ₃	[wt%]	31.4	22.8	17.8		
SiO ₂	[wt%]	48.4	47.3	33.1		
TiO ₂	[wt%]	1.3	1.4	1.8		
As	[ppm]	6	70	12		
Fouling Index	[,]	0.21	0.38	0.82		

Influence on the SCR Catalyst for the U.S. Coal-fired Boiler Application

Items to be Considered		PRB	US	HS	
		Dry	Dry	Wet-Re	
Poisoning	by Fly Ash	Ca	A	В	В
		Na, K	В	В	В
	by As ₂ O ₃		С	В	A
	by Acid Gas	S	С	В	В
Erosion by Fly Ash		В	В	В	
Cell Plugging by Fly Ash		A	В	В	

Wet-Re: Wet Bottom Boiler with Fly Ash Re-circulation Application

Degree of Consideration: A (High) . . B (Middle) . . C (Low)

Catalyst Testing for the U.S. Coal-fired Boiler Application

- - \blacksquare by Gaseous Arsenic (As₂O₃)
 - by Acid Gases (SO₃,HCl, CH₄, CO)
- **Erosion by Fly Ash**
- Lell Plugging by Fly Ash

Catalyst Specification of NOXNON700

Catalyst Type	S-3D	S-6		
Cell Dimension	Pitch	[mm]	11.0	15.8
	Height		6.7	9.8
	Thickness	[mm]	0.8	1.0
Contact Surface Area		$[m^2/m^3]$	600	450
Open Space Area		[%]	76	70
Weight		[kg/m ³]	770	730

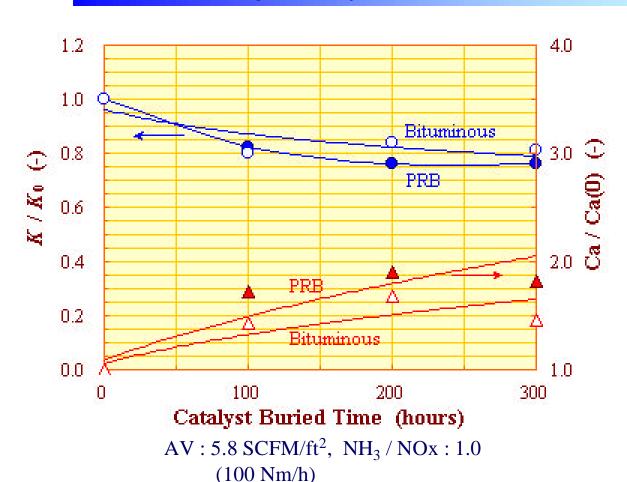
Definition of Catalyst Activity

Assume that the Reaction is First Order with respect to NOx or NH₃.

$$K = -Av \ln (1-x/r)$$

K = Catalyst Activity

Av = Area Velocity


x = NOx Removal Efficiency

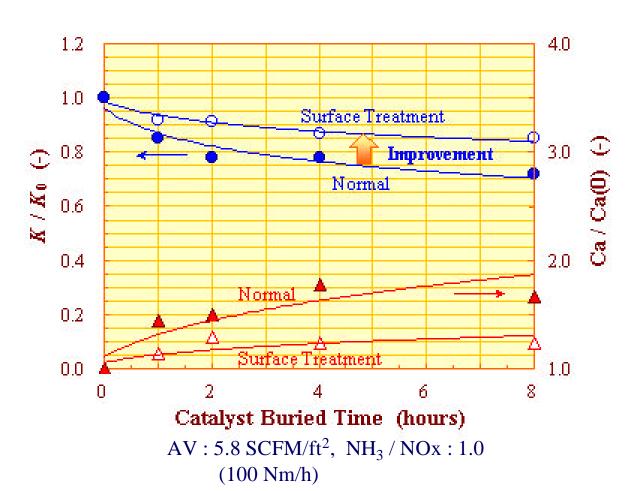
r = Inlet NH3 / NOx molar ratio

Then... K/K_0 Represents for the Degree of Catalyst Deactivation.

Poisoning by Fly Ash (1)

Simulation of Steady State

Experiment (Temp: 660 F)


Accelerated Catalyst Test;
By Buried to the Fly Ash

Activity (Temp: 660 F)

- Deactivation;
 Main cause by
 Accumulation of Calcium
- Deactivation Rate of PRB; Slightly Higher than Bituminous Coal

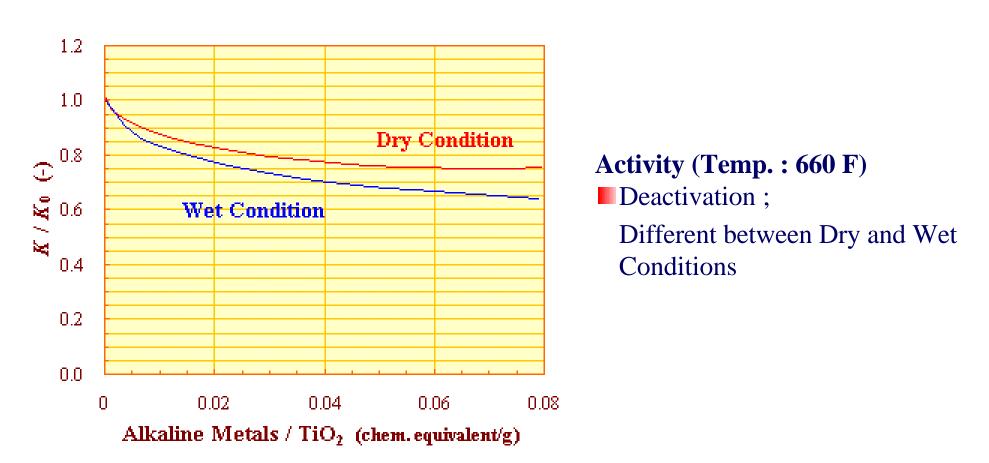
Poisoning by Fly Ash (2)

Simulation during Start-up & Long Term Shut down (PRB Coal)

Experiment (AMB, RH 100%)

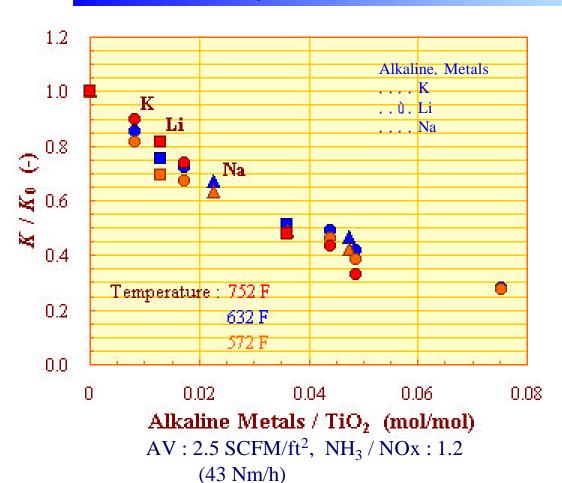
Accelerated Catalyst Test;By Buried to the Fly Ash

Activity (Temp: 660 F)


■ Deactivation;
About 50 Times faster than Steady State

Countermeasure

Surface Treatment;
Effective to the Poisoning
by Calcium


Poisoning by Fly Ash (3) - Summary

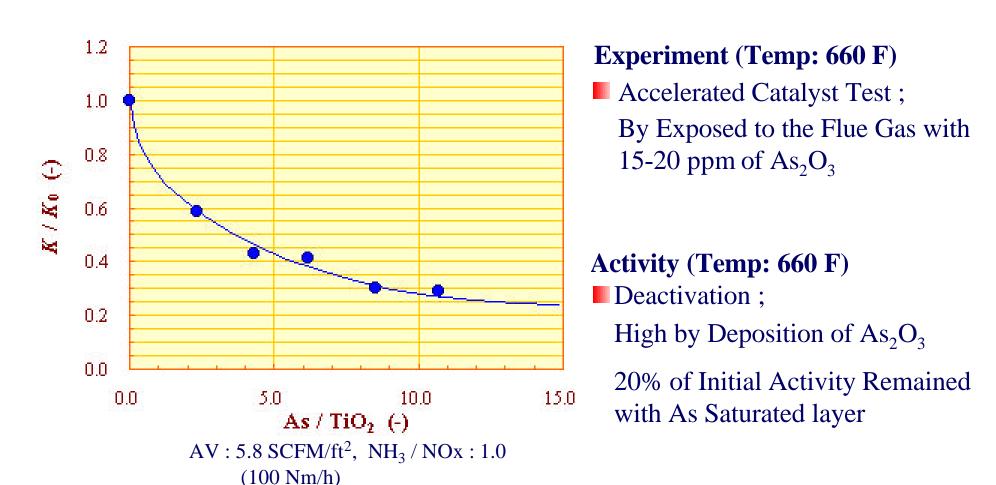
Accelerated Catalyst Test – By Buried to the Fly Ash

Poisoning by Alkaline Metals

Simulation of Wet Condition

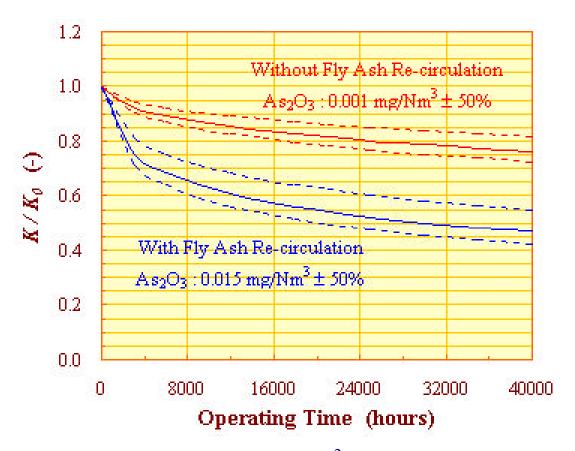
Experiment (AMB)

Accelerated Catalyst Test;
By Impregnated to the K⁺,
Na⁺, Li⁺ Solution


Activity (Temp. in the Figure)

■ Deactivation;
High by Accumulation of K⁺,
Na⁺, Li⁺, but No Difference in
the Metals

Slightly Dependence with SCR Reaction Temperature


Poisoning by Gaseous Arsenic (1)

Simulation of Wet-bottom boiler with Fly Ash Re-circulation

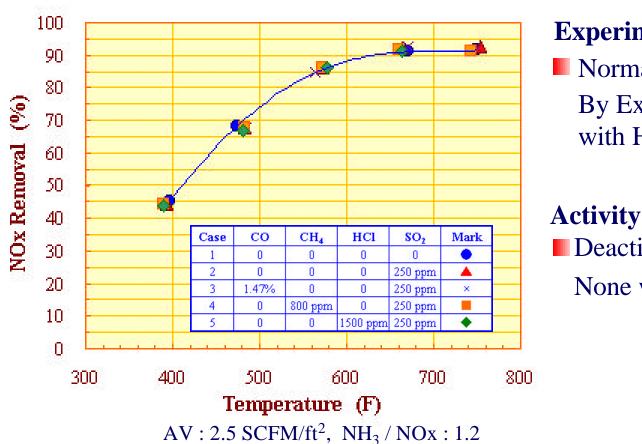
Poisoning by Gaseous Arsenic (2)

Comparison about Fly Ash Re-circulation

AV: 5.8 SCFM/ft², NH₃ / NOx: 1.0 (100 Nm/h)

Calculation (Temp: 660 F)

- No Fly Ash Re-circulation; $As_2O_3: 6. 10^{-8} lb/SCFM (0.001 mg/Nm^3)$
- Fly Ash Re-circulation; As₂O₃: 15 times higher (0.015 mg/Nm³)


Activity

■ Deactivation Rate in Fly Ash Recirculation;

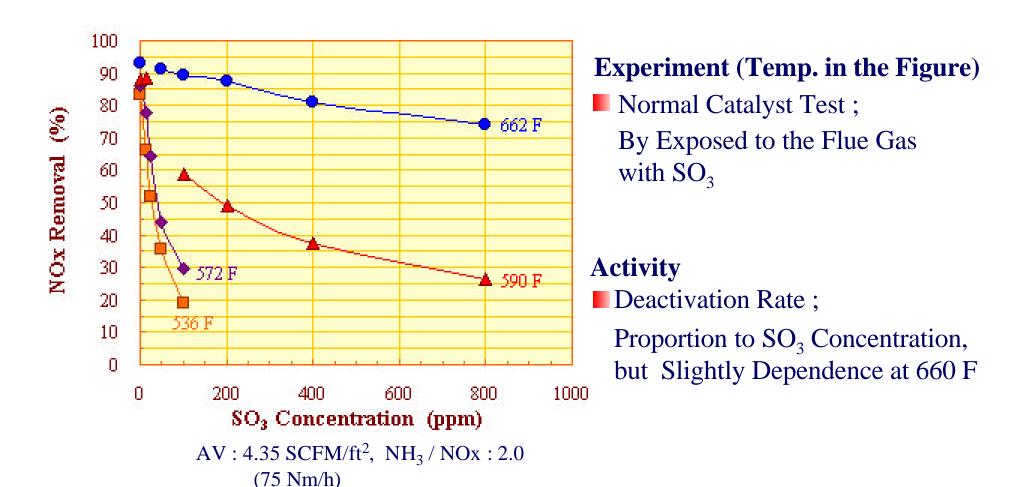
Much Higher than in No Fly Ash Re-circulation

Poisoning by Acid Gases (1)

Simulation of Steady State (Initial Activity)

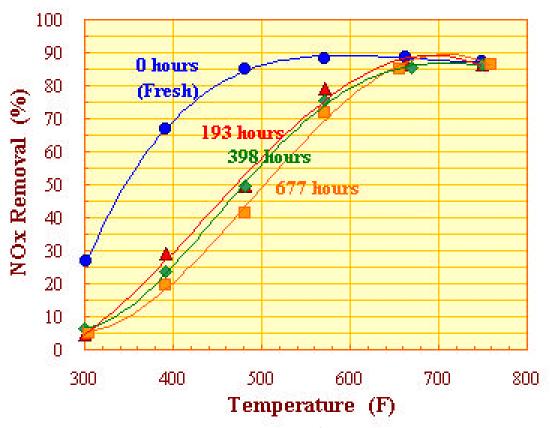
(43 Nm/h)

Experiment (Temp. in the Figure)


Normal Catalyst Test; By Exposed to the Flue Gas with HCl, SO₂, CH₄, CO

■ Deactivation;

None with 1,500 ppm of HCl 250 ppm of SO₂ 800 ppm of CH₄ 1.47 % of CO


Poisoning by Acid Gases (2)

Simulation of Steady State (Initial Activity)

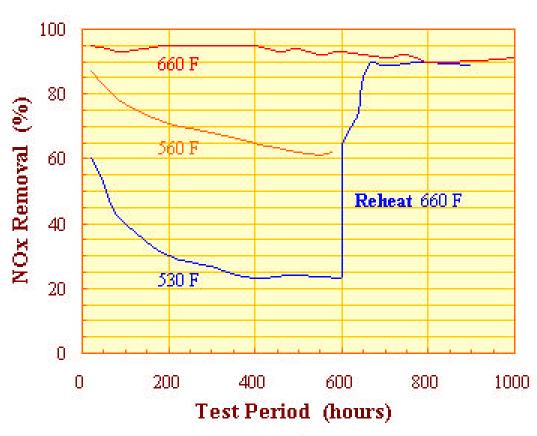
Poisoning by Acid Gases (3)

Simulation of Steady State (Long-term Activity)

AV: 2.5 SCFM/ft², NH₃ / NOx: 1.5 (43 Nm/h)

Experiment (Temp: 680 F)

Accelerated Catalyst Test;
By Exposed to the Flue Gas
with 1,000 ppm of SO₃
during 193, 398, 677 hours


Activity (Temp. in the Figure)

■ Deactivation Rate;
Proportion to Exposing Time,
but None over 650 F

High below 600 F

Poisoning by Acid Gases (4)

Simulation of Catalyst Revival

AV: 0.9 SCFM/ft², NH₃ / NOx: 1.0 (15.5 Nm/h)

Experiment (Temp. in the Figure)

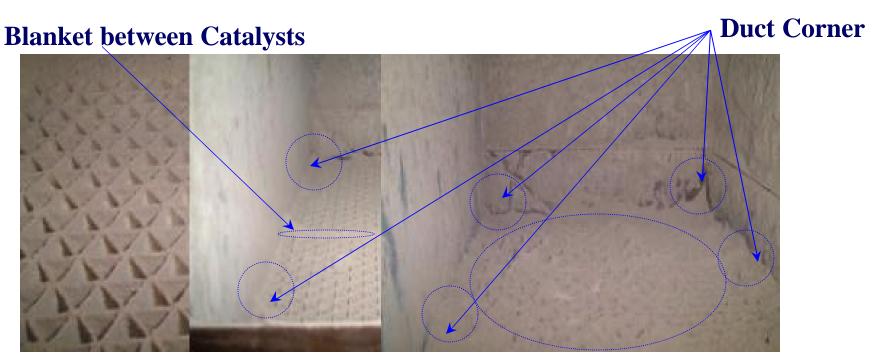
■ Normal Catalyst Test;
By Exposed to the Flue Gas
with 22 ppm of SO₃

Activity

■Re-activation;
Enable to Revival for the SO₃
Poisoning by heat-up over 660 F

Cell Plugging (1)

EXPERIMENTAL APPARATUS



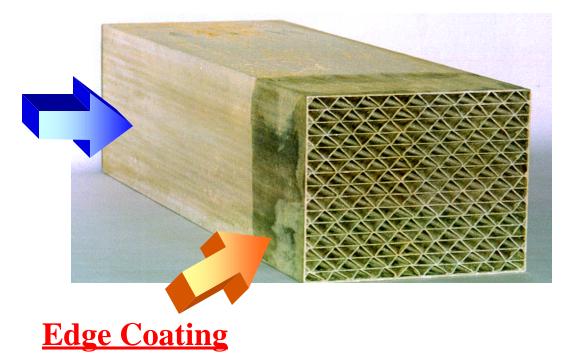
Test Conditions

- S-3D Catalyst
- Fly Ash from PRB Coal
- 240 grains/SCF
- **716** F
- 3.3 16.5 ft/s

Cell Plugging (2)

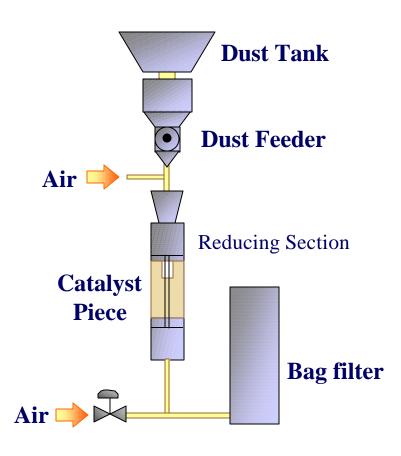
Simulation of Steady State (PRB Coal)

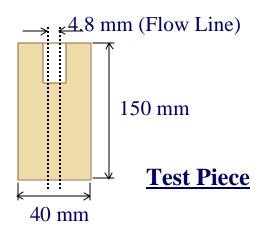
16.5 ft/s (5 m/s) 9.9 ft/s (3 m/s) 96 hours 65 hours


3.3 ft/s (1 m/s) 2 hours

Design Base 10 Std.ft/s (at 660 F) = 21.6 ft/s

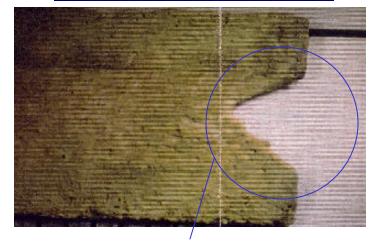
Erosion by Fly Ash (1)


Improvement Catalyst



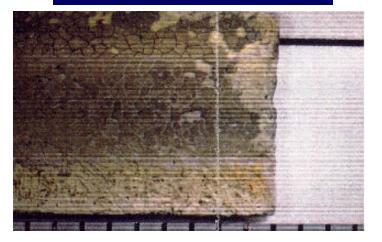
Erosion by Fly Ash (2)

EXPERIMENTAL APPARATUS


Test Conditions

- Fly Ash from Bituminous Coal
- 100 µm (Average Diameter)
- 11,200 grains/SCF
- 55 ft/s (16.5 m/s)

Erosion by Fly Ash (3)


Simulation of Steady State

Without Edge Coating

Edge Erosion

With Edge Coating

Accelerated Test equal to 15,000 hours Operation

Operational Experiences for Coal-fired Boilers. (1)

SCR Plant	Purpose	Remarks	Status	
Case-1	Replacement	Typical Case for High Dust Application		
(Japan)	Replacement	Dust Loading : 240 grains/SCF	Continued	
Case-2	Demonstration	Typical Case for High SOx Application	Continued	
(Japan)	Demonstration	SOx Concentration: 2,120 ppm	Continued	
Case-3	Pilot Test	Typical Case for High Efficiency Application	Finished	
(Japan)	Thot Test	NOx Removal Efficiency: 80 %	Timsned	
Case-4	"SCR Demonstration Program"		Finished	
(the U.S.)	Pilot Test	Clean Coal Technology promoted by the DOE	riiisned	

Operational Experiences for Coal-fired Boilers. (2)

Location: Shimonoseki, Japan

Load : 175 MW

Type: Dry Bottom

Coal: Bituminous (Sulfur 0.8%)

Location: Isogo, Japan

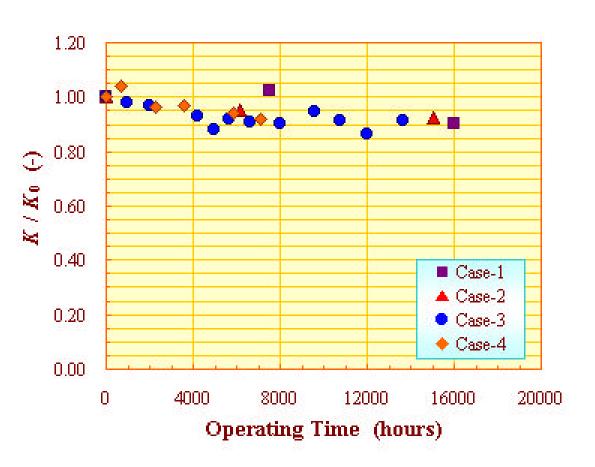
Load : 265 MW

Type: Dry Bottom

Coal: Bituminous

Location: Pensacola, Florida

Load: 75 MW


Type: Dry Bottom

Coal: IllinoisNo.6 (Sulfur 2.3%)

Operational Experiences for Coal-fired Boilers. (3)

		Case-1	Case-2	Case-3	Case-4
Boiler Type		Dry-bottom	Dry-bottom	Dry-bottom	Dry-bottom
Coal		Bituminous	Bituminous	Bituminous	Bituminous
Flue Gas Flow Rate	[SCFM]	342,000	549,000	930	420
SCR Temperature	[F]	698	734	662	700
Dust Loading	[gr/SCF]	240	160	320	160
SOx	[ppm]	1,600	2,120	450	2,000
Inlet NOx	[ppm]	570	340	180	400
NOx Removal Efficiency	[%]	50	66	80	80
Leak Ammonia	[ppm]	< 5	< 10	< 5	< 5

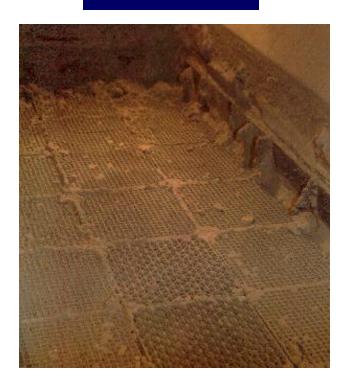
Catalyst Activity

Catalyst Activity

■ Deactivation Rate;
No Difference in the 4 cases

Over 80% of Initial Activity Remained at 2 years Operation

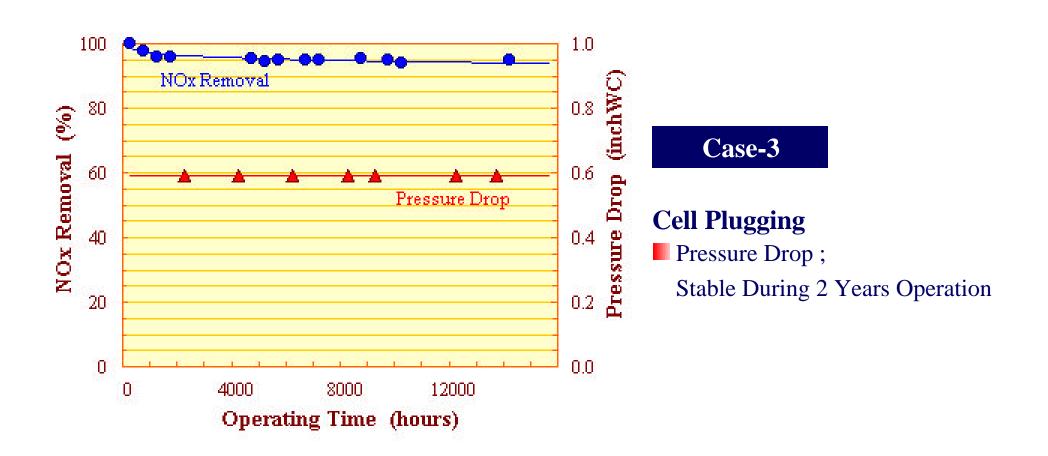
SO₂ Oxidation

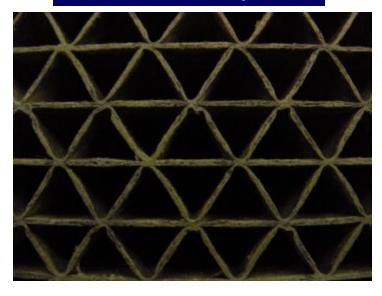

SO₂ Oxidation

- ■SO₂ Oxidation Rate; Less than 1.0 % at 750 F
- Low SO₂ Oxidation Type; Reducing 50 % of SO₂ Oxidation Rate Moreover

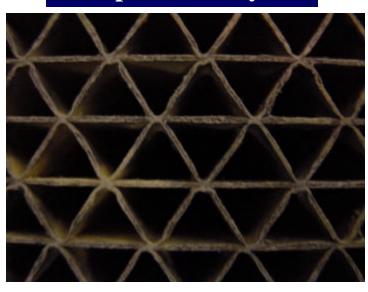
Cell Plugging (1)

Case-1




■ No dust accumulation has been found during 2 years operation.

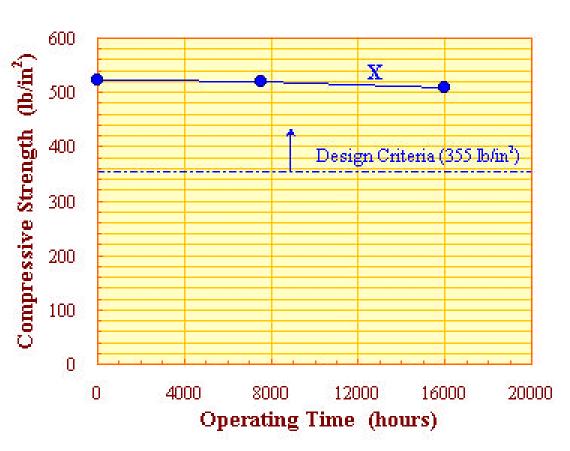
Cell Plugging (2)

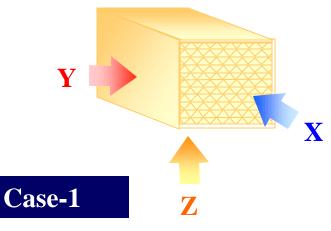


Erosion (1)

Fresh Catalyst

Exposed Catalyst


■ No erosion has been found during 2 years operation.


Case-1

Dust Loading: 240 grains/SCF

Exposed Period: 2 years

Erosion (2)

Erosion

■ Compressive Strength; Stable During 2 Years Operation

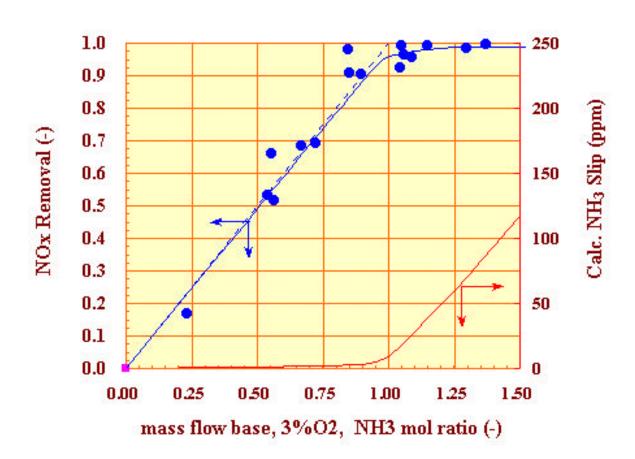
Design Criteria of Products

X: 355 lb/in²

Y: 101 lb/in² Z: 43 lb/in² (S-6 Type)

Pilot Test for PRB at A Power Station (1)

Application to PRB Coal


Test Conditions				
Flue Gas Flow Rate	[SCFM]	60		
SCR Temperature	[F]	610		
Dust Loading	[gr/SCF]	,		
SOx	[ppm]	500		
Inlet NOx	[ppm]	230		
NOx Removal Efficiency	[%]	> 80		
Leak Ammonia	[ppm]	< 5		

Location: North America

Load: 500 MW Type: Dry Bottom

Pilot Test for PRB at A Power Station (2)

Catalyst Performance

Conclusion

High Sulfur Bituminous Coal for Dry-bottom Boilers

■ Similar countermeasures as the Japanese experiences.

PRB Coal for Dry-bottom Boilers

In addition to the same consideration as the Japanese experiences;

- Countermeasure to minimize the catalyst deactivation by calcium in the fly ash
- Necessity of the soot blowing device to avoid the fly ash accumulation

Any Kind of Coal for Wet-bottom Boilers with the Fly Ash Re-circulation

- Examination of As2O3 in the flue gas to clarify the catalyst deactivation rate
- Life management plan suitable for the operation conditions required

∔Common

■ Preservation of the catalyst to avoid the dewing on the catalyst surface with fly ash during a long-term shut down period.